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ABSTRACT

Modern-day reservoir management and monitoring of geo-
logic carbon storage increasingly call for costly time-lapse
seismic data collection. We demonstrate how techniques from
graph theory can be used to optimize acquisition geometries
for low-cost sparse 4D seismic data. Based on midpoint-off-
set-domain connectivity arguments, our algorithm automati-
cally produces sparse nonreplicated time-lapse acquisition
geometries that favor wavefield recovery.

INTRODUCTION

Time-lapse seismic data acquisition is a costly but crucial
endeavor for reservoir management and monitoring of geologic car-
bon storage. Although a sparse randomized collection of seismic
data can lead to major improvements in acquisition productivity
(Hennenfent and Herrmann, 2008; Herrmann and Hennenfent,
2008; Herrmann, 2010; Mosher et al., 2014), systematic approaches
to performance prediction, other than computationally expensive
simulation-based studies, are mostly lacking. In addition, acquisi-
tion optimization approaches, such as minimizing the mutual coher-
ence (Tang et al., 2008; Mosher et al., 2014; Obermeier and
Martinez-Lorenzo, 2017) or minimizing the spectral gap ratio
(SGR) (Zhang et al., 2022; López et al., 2023), do not handle
the unique challenges of time-lapse seismic data acquisition.
To meet these challenges, inversion with the joint recovery model

(JRM) (Oghenekohwo et al., 2017; Wason et al., 2017) will be com-
bined with automatic binary sampling mask generation driven by
SGR minimization (Zhang et al., 2022). We opt for the JRM be-
cause it inverts the baseline and monitor surveys jointly for the

common component, which contains information shared between
the surveys, and innovations with respect to the common compo-
nent. Because the fictitious common component is observed by all
surveys, its recovery improves when the time-lapse surveys contain
complementary information. This is the case in which sparse sur-
veys are not replicated (Oghenekohwo et al., 2017; Wason et al.,
2017) or the time-lapse data sets contain independent noise terms
(Tian et al., 2018). In either case, the JRM leads without insisting on
replication of the surveys to high degrees of time-lapse repeatability
in the data (Oghenekohwo et al., 2017; Wason et al., 2017) and
image space (Yin et al., 2023). It also yields better interpretability
of time-lapse field data (Wei et al., 2018).
As demonstrated in this paper, including the common component

offers additional advantages when optimizing time-lapse acquisi-
tion via SGR minimization. To demonstrate this, we first explain
the relationship between the SGR and connectivity within graphs
associated with binary sampling masks. Next, we describe how this
connectivity, which favors wavefield reconstruction, can be im-
proved by minimizing the SGR via optimization. To enhance the
inversion of time-lapse data with the JRM, a new optimization ob-
jective will be introduced that contains SGRs of the common com-
ponent and the baseline/monitor surveys. After a brief discussion on
minimizing this objective with simulated annealing, the proposed
methodology for automatic time-lapse binary mask generation is
numerically validated on realistic synthetic 2D data.

OPTIMIZED TIME-LAPSE ACQUISITION

Although the SGR has been used successfully to predict and im-
prove the performance of wavefield reconstruction, it has not yet
been used to optimize time-lapse acquisition. After briefly discus-
sing the SGR and JRM, we introduce our methodology to optimize
time-lapse data acquisition.
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The spectral gap ratio

As shown by López et al. (2023), the success of seismic data wave-
field reconstruction via universal matrix completion (Bhojanapalli
and Jain, 2014) can be predicted by the ratio of the first two singular
values of binary sampling masks σ2ðMÞ=σ1ðMÞ ∈ ½0;1�, whereM is
a binary matrix with ones where data are sampled and with zeros
otherwise. This ratio is known as the SGR and provides a cheap-
to-compute quantitative measure to predict recovery quality. The
smaller the SGR, the better the connectivity within graphs spanned
by binary sampling masks. Improved connectivity leads to improved
wavefield recovery (López et al., 2023). Although useful, the SGR
itself is not constructive because it does not produce sampling masks
with small SGRs. With simulated annealing, Zhang et al. (2022) de-
vise a practical algorithm to generate acquisition geometries with
small SGRs. In this work, we extend this approach by optimizing
sparse geometries for time-lapse data acquisition.

Optimized sampling mask generation

Given an initial binary mask, M ∈ f0;1gns×nr , with ns sources
and nr receivers, Zhang et al. (2022) propose a methodology to min-
imize the SGR via

minimize
M

LðMÞ subject to M ∈ C; (1)

with the objective, LðMÞ ¼ σ2ðMÞ=σ1ðMÞ, given by the SGR. To
ensure the feasibility of the optimized binary masks with source sub-
sampling ratio ρ ∈ ð0;1Þ, the constraint C ¼ ⋂3

i¼1 Ci is included,
which consists of the intersection of the cardinality constraint,

C1 ¼ fMjðMÞ ¼ bns × ρc × nrg, the binary mask constraint,
C2 ¼ fMjM ∈ f0;1gns×nrg, and a constraint on the maximum gap
size between consecutive samples, C3 ¼ fMjmaxgapðMÞ ≤ Δg,
where Δ is the maximal permitted gap size. By solving equation 1,
Zhang et al. (2022) produce binary sampling masks that improved
wavefield reconstruction compared with masks generated by random-
ized jittered sampling (Hennenfent and Herrmann, 2008). Figure 1
contrasts jittered with optimized sampling in the midpoint-offset do-
main, reducing the SGR from 0.333 to 0.196. The optimized mask
increases the sampling at the near offsets where there are more ways
to connect to midpoints, which favors wavefield reconstruction (López
et al., 2023). This paper delves deeper into time-lapse survey design
and proposes a novel simulation-free method to find near-optimal
sparse source locations for a baseline survey and one or more monitor
survey(s). Our method is guided by the JRM, which has a successful
track record in time-lapse wavefield reconstruction (Oghenekohwo
et al., 2017; Wason et al., 2017). Next, we introduce the JRM and
present our SGR minimization framework, which is tailored to opti-
mize the time-lapse survey design in accordance with the JRM.

Joint recovery model

Lowering costs while ensuring time-lapse repeatability are the
main challenges in the design of seismic data monitoring systems
used to optimize reservoir management and safeguard geologic car-
bon storage. Both challenges can be met by inverting sparsely
sampled baseline and monitoring data jointly. For time-lapse ac-
quisition with a single monitor survey, this entails inverting

b ¼ AðZÞ with Að·Þ ¼
�
A1 A1 0

A2 0 A2

�
ð·Þ: (2)

In this JRM, the linear operators,Aj; j ¼ 1;2, stand for the combined
action of converting monochromatic time-lapse data from the mid-
point-offset domain to the source-receiver domain, followed by trace
collection with the acquisition geometries defined by the binary sam-
pling masks, Mj; j ¼ 1;2 with j ¼ 1 and j ¼ 2 masks for the base-
line/monitor surveys. With this model, time-lapse data b, which
contain the baseline b1 and monitor data b2, are linearly related to
Z, which contains matrices for the unknown densely sampled
common component Z0 and innovations with respect to this common
component, Zj; j ¼ 1;2. Compared to recovering the baseline/mon-
itor surveys separately, the JRM produces repeatable results from non-
replicated (Kumar et al., 2017; Oghenekohwo et al., 2017; Wason
et al., 2017), noncalibrated (Oghenekohwo and Herrmann, 2017),
and noisy (Tian et al., 2018) time-lapse data. These enhanced results
are due to the improved recovery of the fictitious common component,
and therefore, better-resolved vintages and time-lapse differences.

Time-lapse optimized mask generation

Based on the success of the JRM, we carry the argument of
minimizing the SGR a step further by optimizing this quantity
for the baseline/monitoring surveys. Because Z0 is observed
by both surveys, the set of sampling points fM0g equals the
union fM0g ¼ fM1g ∪ fM2g. When surveys are replicated,
fM0g ¼ fM1g ¼ fM2g. However, M0 becomes larger when the
baseline and monitor surveys are not replicated, which explains
why the common component is better resolved when the surveys
are not replicated.

Figure 1. (a) Jittered versus (b) optimized sampling mask in the
midpoint-offset domain.
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Although equation 1 leads to improved sampling masks for indi-
vidual surveys, it does not exploit the fact that the common compo-
nent is observed by all surveys. For this reason, we propose an
optimization procedure with respect toM1 andM2 with an objective
that also includes the SGR for the common component. To avoid the
generation of poor sampling masks, we follow a min-max principle
where the maximum — i.e., the l∞-norm — of the SGRs for the
common and innovation components is minimized. To compensate
for likely smaller SGRs for the common component when the sur-
veys do not overlap (fM0g > fM1g; fM2g), we also introduce a
scaling. We base this scaling on the property (see Definition 3.1
in Hoory et al., 2006; Bhojanapalli and Jain, 2014) that the second
singular value of d-regular graphs — i.e., seismic data sampling
masks with d nonzero entries per midpoint or offset — scales withffiffiffi
d

p
. Given this scaling, we propose to minimize the following con-

strained optimization problem, for j ¼ 1;2:

minimize
M1;M2

LðM1;M2Þ

subject to fM0g¼fM1g∪ fM2g; Mj ∈ Cj; (3)

with LðM1;M2Þ ¼ k½LðM0Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððM1Þ=ðM0ÞÞ

p
LðM1Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððM2Þ=ðM0ÞÞ

p
LðM2Þ�k∞: As previously, the minimization is

subject to constraints, Cj; j ¼ 1;2, with a slight abuse of notation,
representing the cardinality, binary mask, and maximum gap con-
straints for the baseline and the monitor surveys, respectively.
Figure 2 shows the deployment of the proposed time-lapse ac-

quisition design and how to recover the fully sampled time-lapse
data jointly. To calculate the optimized source locations for the
baseline and monitor surveys, we solve the optimization problem
in equation 3. After collecting seismic data traces with the opti-
mized (by minimizing the SGRs) acquisition, we recover fully
sampled time-lapse data by inverting the system of equations in-
cluded in equation 2 with structure promotion (Kumar et al.,
2017). To produce time-lapse sampling masks, we use simulated
annealing as proposed by Zhang et al. (2022) but with the following

differences: (1) randomly perturbed masks are drawn for each survey
independently, (2) the compound objectives and constraints of equa-
tion 3 are used, and (3) the sample points to be relocated are allowed
to move more freely than during jitter sampling, which allows us to
better explore candidate sampling masks. Figure 3 shows how the
algorithm progresses in very early iterations when initialized with
a replicated jittered subsampled (removing 80% of the sources) ac-
quisition. From Figures 2 and 3a, we observe that the colocated
source positions (denoted by the black dots) are gradually replaced
with noncoincident source locations for the baseline (the blue dots)
and monitor surveys (the red dots). Even though the objective of
equation 3 decreases nonmonotonically (see Figure 3b), the
reconstruction signal-to-noise ratio (S/N) increases for the baseline
and monitor surveys for the selected points.

NUMERICAL VALIDATION

To confirm the benefits of the optimized acquisition, we consider
time-lapse data, which differ by a complex gas cloud (Jones et al.,
2012; Wason et al., 2017). Using finite differences (Louboutin et al.,
2019, 2022; Witte et al., 2019; Luporini et al., 2020), fully sampled
(split spread) 2D baseline and monitor surveys are simulated, each
consisting of 300 sources/receivers sampled at 12.5 m. By using a
single jittered subsampling mask, 80% of the sources are removed,
yielding an average source sampling rate of 62.5 m with 100%
overlap. After running 40,000 iterations of the simulated annealing
algorithm, the SGRs of the baseline/monitor surveys decrease from

Figure 3. Automatic time-lapse sampling mask generation. (a) Start-
ing from a jittered replicated sampling mask, the algorithm produces
masks that have smaller SGRs but are no longer replicated. The over-
lap ratio decreases from 100% to 39%. The color scheme for markers
remains consistent with Figure 2. (b) Nonmonotonically decaying ob-
jective and reconstruction S/N evaluated at points where the objective
decreased by more than 0.003.

Figure 2. Illustration of the proposed optimized time-lapse acquis-
ition design. Optimized source locations for the baseline and the
monitor surveys are calculated first with equation 3, followed by
collecting sparse samples in the field. Fully sampled time-lapse data
are obtained by inverting the system of equations in equation 2 with
structure promotion (Kumar et al., 2017). The black dots of the sam-
pling masks plotted on the left represent the replicated source posi-
tions. The blue and red dots correspond to the nonreplicated source
locations for the baseline and the monitor surveys, respectively. To
better highlight the replacement of colocated with noncoincident
source locations after the SGR minimization, we only display a rep-
resentative subset of the actual nonoptimized and optimized source
locations.

Time-lapse acquisition design A21

D
ow

nl
oa

de
d 

03
/1

8/
24

 to
 1

43
.2

15
.1

6.
20

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

23
-0

02
4.

1



0.346 to 0.268 and 0.262, respectively. The reduction in the overlap
ratio (to 22%) leads to improvement in wavefield recovery via ma-
trix completion (Kumar et al., 2015, 2017), which results in better
S/Ns for the baseline survey from 6.55 to 17.03 dB and the monitor
survey from 6.67 to 16.99 dB, as shown in Figure 4. For the reasons
explained by Oghenekohwo et al. (2017) and Wason et al. (2017),
time-lapse difference plots are not included because the benefits of
exact replication vanish when acquisition geometries undergo rel-
atively small (1–2 m) random shifts.
Although these improvements are encouraging, the proposed op-

timization is approximate and the produced binary masks will be
different for different starting masks. To investigate this effect,
30 overlapping jittered masks are generated by removing 75% of
the sources. By reducing the overlap to 29%� 8%, the optimized
masks improve the SGRs, as can be observed from the violin plots
in Figure 5a. As previously, the reductions in SGRs translate into
improved S/Ns, as shown in Figure 5b. Compared with the box
plots, the violin plots display the entire distribution including lines
for the median (the long dashes) and the first and third quartiles (the
short dashes). We can make the following observations: (1) the
SGRs for the baseline/monitor surveys decrease significantly;
(2) because of the larger number of sampled sources, the SGR
for the common component is smaller and more narrowly distrib-
uted; (3) the distribution of the SGRs of the baseline/monitor sur-
veys is also narrow compared with one of the initial jittered binary
sampling masks; and (4) the S/Ns for the recovered baseline/mon-
itor surveys improve significantly.

Even though the preceding results are encouraging and consistent
with published reports that claim benefits of the JRM (Oghenekohwo
et al., 2017; Wason et al., 2017; Yin et al., 2023), further scrutiny is in
order. To this end, additional experiments were conducted to better
understand the robustness of the proposed methodology. Aside from
predictable behavior for different starting masks (Figure 5), we also
found that optimized SGRs are relatively insensitive to different runs
of the simulated annealing algorithm and random perturbations in the
optimized masks. The first observation implies that although the si-
mulated annealing algorithm may produce different masks, the SGRs
remain very close, yielding wavefield reconstructions of near-equal
quality. The second observation indicates that postplot errors by sin-
gle gridpoint shifts (12.5 m) in the worst scenario offset the gains
made by the optimization. However, on average, improvements
are mostly preserved although with higher variability.
The observed robustness of the presented method is consistent

with the reported behavior of the JRM. Even though we only con-
sider the on-the-grid case, the argument can be made that improve-
ments will carry over to the off-the-grid situation (López et al.,
2016; Oghenekohwo and Herrmann, 2017; Wason et al., 2017).
However, to turn this claim into a more solid argument, we would
have to extend the presented approach to the infinite-dimensional
case, which is beyond the scope of this paper.

Figure 4. Time-lapse wavefield reconstruction in the time domain.
(a) Wavefield reconstruction from 80% jittered subsampling for the
baseline survey S/N = 6.55 dB, monitor survey S/N = 6.67 dB, and
errors between the ground truth and the reconstructed wavefields.
(b) The same but with optimized sampling masks, yielding im-
proved recovery baseline/monitor surveys with S/N = 17.03 and
16.99 dB, respectively.

Figure 5. Violin plots for the (a) SGRs and (b) recovery S/Ns for 30
independent experiments. These experiments show systematic re-
ductions in SGR and significantly improve reconstruction S/Ns
for optimized surveys.
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CONCLUSION

Acquisition costs form a major impediment to time-lapse seis-
mic data. To reduce these costs while ensuring time-lapse repeat-
ability, a novel acquisition optimization scheme was proposed
that produces binary sampling masks that favor wavefield
reconstruction with the JRM. Optimized sampling masks were
generated automatically by minimizing a new objective function
consisting of SGRs for the baseline/monitor surveys and the
common component shared by the surveys. Aside from allowing
for wave-simulation-free, and therefore computationally feasible,
optimized acquisition design, the proposed method also reaffirms
the suggestion that deliberate relaxation of survey replication may
lead to improved quality of jointly inverted surveys. This claim is
solely based on connectivity arguments for the acquisition geom-
etries associated with the baseline/monitor surveys and the
common component. Because the SGR is extremely cheap to
evaluate, it lends itself very well to be extended to multiple mon-
itoring surveys and three dimensions. As long as the time-lapse
acquisition geometries are relatively well calibrated — i.e., errors
between actual and assumed geometries are small — our simu-
lation-free survey design methodology also eliminates the need for
cumbersome 4D processing to a large degree. It enables low-cost
surveys and uses the JRM to accurately invert for fully sampled
repeatable time-lapse data without insisting on replicating the sur-
veys in the field. The recovered data can subsequently be imaged
and inverted to extract changes in the reservoir’s elastic properties.
The proposed method also should be capable of accommodating
preexisting constraints in the field, including restricted areas
where no source/receiver can be placed due to production plat-
forms, private properties, or governmental minimum source/
receiver line distance regulations. In principle, these additional
constraints can be incorporated to refine the search space of the
simulated annealing algorithm. Off-the-grid acquisition geom-
etries are also conducive to being improved by SGRs, but we will
leave these extensions to future work.
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