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ABSTRACT

We develop a semiamortized variational inference (VI)
framework designed for computationally feasible uncertainty
quantification in full-waveform inversion to explore the multi-
modal posterior distribution without dimensionality reduction.
The framework is called full-waveform VI via subsurface
extensions with refinements (WISER). WISER builds on top
of a supervised generative artificial intelligence method that
performs approximate amortized inference that is low-cost al-
beit showing an amortization gap. This gap is closed through
nonamortized refinements that make frugal use of wave phys-
ics. Case studies illustrate that WISER is capable of full-res-
olution, computationally feasible, and reliable uncertainty
estimates of velocity models and imaged reflectivities.

INTRODUCTION

Full-waveform inversion (FWI) aims to estimate unknown multi-
dimensional velocity models x from noisy seismic data y by
inverting the nonlinear forward operator F , which relates x and
y via y ¼ FðxÞ þ ϵ with measurement noise ϵ ∼ Nð0; σ2IÞ. FWI
poses significant challenges because it requires solving a high-
dimensional, nonconvex, and ill-posed inverse problem, with a com-
putationally demanding forward operator. In addition, the inherent
nonuniqueness of FWI results leads to multiple possible earth models
compatible with the observed data, underscoring the need for uncer-
tainty quantification (UQ) to handle this multimodality.
The trade-off between accuracy and computational cost is always

a critical consideration of UQ. To circumvent the costs associated
with global optimization, several approaches have attempted local-
ized UQ (Fang et al., 2018; Keating and Innanen, 2021; Hoffmann
et al., 2024; Izzatullah et al., 2024). However, these approaches may

not capture the full complexities of multimodal parameter spaces. In
contrast, a Bayesian inference approach offers a costly but compre-
hensive characterization of the posterior distribution pðxjyÞ.
Bayesian inference algorithms are broadly categorized into two

groups. The first category, sampling-based methods, such as Mar-
kov-chain Monte Carlo (MCMC), struggle with high-dimensional
parameter spaces. To meet this challenge, they often rely on too re-
strictive low-dimensional parameterizations to reduce the number of
sampling iterations (Fang et al., 2020; Liang et al., 2023; Wei et al.,
2023, 2024a, 2024b, Dhabaria and Singh, 2024), which could bias
the inference results, rendering them impractical for multidimen-
sional UQ studies especially when solutions are nonunique.
The second category, optimization-based methods, such as varia-

tional inference (VI) (Zhang et al., 2021), seek to approximate the
posterior distribution using classes of known parameterized distri-
butions. VI can be subdivided into amortized and nonamortized
methods. Amortized VI involves a computationally intensive offline
training phase, leveraging advances in generative artificial intelli-
gence (genAI), particularly with models such as conditional diffu-
sion (Baldassari et al., 2024) and conditional normalizing flows
(CNFs) (Winkler et al., 2019). After training, amortized VI provides
rapid sampling during inference (Orozco et al., 2023a; Siahkoohi
et al., 2023; Sun et al., 2024), exemplified by the full-waveform
variational inference via subsurface extensions (WISE) framework
(Yin et al., 2024b) for FWI problems. However, these methods may
suffer from an amortization gap — implying that the amortized
networks may only deliver suboptimal inference for a given obser-
vation during inference, particularly when trained with limited ex-
amples or when there exists a discrepancy between training and
inference (Marino et al., 2018). Conversely, nonamortized VI ded-
icates all computational resources to the online inference (Zhao
et al., 2022; Zhang et al., 2023; Zhang and Curtis, 2024). They re-
sult in more accurate inference, but the costly optimization has to be
carried out repeatedly for new observations. In addition, incorpo-
rating realistic priors requires embedding them through density
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evaluations, such as those enabled by normalizing flows (Kruse
et al., 2021; Louboutin et al., 2023; Yin et al., 2023).
This paper introduces the full-waveform VI via subsurface exten-

sions with refinements (WISER) algorithm (shown in Algorithm 1)
as a semiamortized VI framework to facilitate computationally fea-
sible and reliable UQ for multidimensional FWI without dimension-
ality reduction. Building on WISE, we train CNFs for efficient,
suboptimal amortized inference, but then follow up with a crucial
refinement step that only makes frugal use of the forward operator
and its gradient. The refinement step aligns the posterior samples
with the observation during inference, effectively bridging the am-
ortization gap and enhancing inference accuracy. The performance
of WISER is demonstrated through realistic synthetic 2D case stud-
ies using the Compass model (Jones et al., 2012).

AMORTIZED VI WITH WISE (LINES 1–20)

WISER starts with an offline training phase that leverages condi-
tional generative models to approximate the posterior distribution.
This is achieved by WISE, which involves generating a training data
set (lines 3–9 of Algorithm 1) and training the CNFs (lines 11 and 12).

Data set generation (lines 3–9)

We begin by drawing N velocity models from the prior distribu-
tion, denoted by pðxÞ (line 5). For each sample xðiÞ, we simulate the
observed data yðiÞ by performing wave modeling and adding a ran-
dom noise term (lines 6 and 7). Next, we compute common-image
gathers (CIGs) (Hou and Symes, 2016) for each observed data with
a 1D initial velocity model x0. These CIGs, represented by ȳðiÞ, are
produced by applying the adjoint of the extended migration oper-
ator ∇F ðx0Þ⊤ to the observed data. Using CIGs as the set of phys-
ics-informed summary statistics not only preserves information
from the observed seismic data (ten Kroode, 2023) but also enhan-
ces the training of CNFs in the next stage (Radev et al., 2020;
Orozco et al., 2023b), as they help to decode the wave physics,
translating prestack data into the image (subsurface-offset) domain.

Network training (lines 11 and 12)

CNFs are trained with pairs of velocity models and CIGs via min-
imization of the objective in line 12. The symbol fθ denotes the
CNFs, characterized by their network weights θ and the Jacobian
Jfθ . The term “normalizing” within CNFs implies their functional-
ity to transform the realizations of velocity models xðiÞ, conditioned
on the summary statistics (CIGs), into Gaussian noise from a stan-
dard multivariate normal distribution (as evident by the use of
the l2 norm).

Online inference (lines 14–20)

The previously mentioned data generation and CNF training
procedures conclude the offline training phase. During the online
inference, amortized VI is enabled by leveraging the inherent invert-
ibility of CNFs. For a given observation yobs, the online cost is
merely generation of a single set of CIGs (line 16). Subsequently,
posterior samples are generated by applying the inverse of the CNFs
to Gaussian noise realizations, conditioned on these CIGs (lines 18
and 19). Here, we use hϕ to represent the identity operator. It is a
placeholder for later where hϕ will be repurposed to represent more
complex operators based on physics-based corrections.

PHYSICS-BASED REFINEMENTS (LINES 22–32)

Consider a given observation yobs and its corresponding posterior
samples xi ∼ pðx; ȳobsÞ. The latent space representations generated
by the trained CNFs ẑi ¼ fθ� ðxi; ȳobsÞ may not conform exactly to
the standard Gaussian distribution during inference. Thus, using
f−1θ� ðz; ȳobsÞ for inference with z ∼ Nð0; IÞ will not result in the de-
sired posterior distribution. We refer to the distribution of ẑi as the
shifted latent distribution, denoted by pθ� ðz; ȳobsÞ. Mathematically,
the amortization gap is quantified as KLðNð0; IÞkpθ� ðz; ȳobsÞÞ > 0,
where KL is the Kullback-Leibler (KL) divergence. To address this
issue, we follow Siahkoohi et al. (2023) to apply latent space cor-
rections to fine tune the trained CNFs. This involves integrating
a shallower, yet invertible, network, specifically trained to map

Algorithm 1. WISER: full-waveform VI via subsurface
extensions with refinements.

1: Offline training phase

2:

3: Data set generation

4: for i ¼ 1∶N do

5: xðiÞ ∼ pðxÞ
6: ϵðiÞ ∼ pðϵÞ
7: yðiÞ ¼ F ðxðiÞÞ þ ϵðiÞ # forward modeling

8: ȳðiÞ ¼ ∇F ðx0Þ⊤yðiÞ # extended migration

9: end for

10:

11: Network training

12: θ� ¼ argmin
θ

1
N

P
N
i¼1

�
1
2
kfθðxðiÞ; ȳðiÞÞk22 − log j det Jfθ j

�
13:

14: Online inference phase

15:

16: ȳobs ¼ ∇Fðx0Þ⊤yobs # extended migration

17: for i ¼ 1∶M do

18: zi ∼ Nð0; IÞ
19: xi ¼ f−1θ� ðhϕðziÞ; ȳobsÞ
20: end for

21:

22: Physics-based refinements

23: for ii ¼ 1∶maxiter1 do

24: for i ¼ 1∶M do # physics-based gradient update

25: gi¼∇xi

�
1
2σ2

kFðxiÞ−yobsk22þ 1
2γ2

kxi−f−1θ� ðhϕðziÞ;ȳobsÞk22
�

26: xi ¼ xi − τgi
27: end for

28: for iii ¼ 1∶maxiter2 do

29: LðϕÞ ¼ P
M
i¼1½ 1

2γ2
kxi − f−1θ� ðhϕðziÞ; ȳobsÞk22 þ 1

2
khϕðziÞk22

− log j det Jhϕ j�
30: ϕ←ADAMðLðϕÞÞ
31: end for

32: end for

33:

34: Output: ff−1θ� ðhϕðziÞ; ȳobsÞgMi¼1 as samples of pðxjyobsÞ

A2 Yin et al.

D
ow

nl
oa

de
d 

02
/1

8/
25

 to
 1

43
.2

15
.1

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

24
-0

48
3.

1



samples from the standard Gaussian distribution to the (unknown)
shifted latent distribution, thereby reducing this amortization gap.
In pursuit of this goal, we adopt a transfer learning approach by

freezing the weights of the trained CNFs and updating only the
weights of the shallower network. The objective function reads,

minimize
ϕ

Ez∼Nð0;IÞKLðpðhϕðzÞÞkpθ� ðz; ȳobsÞÞ

¼ 1

2σ2
kF ∘ f−1θ� ðhϕðzÞ; ȳobsÞ − yobsk22

þ 1

2
khϕðzÞk22 − log j det Jhϕ j: (1)

Equation 1 minimizes the reverse KL divergence between the dis-
tribution of the corrected latent variables pðhϕðzÞÞ and the shifted
latent distribution pθ� ðz; ȳobsÞ, with hϕ being the refinement net-
work. A detailed proof can be found in Siahkoohi et al. (2021,
2023), along with related references. For linear inverse problems
in seismic imaging, Siahkoohi et al. (2023) demonstrate that an
elementwise scaling and shift mechanism is sufficient to close the
gap. However, given the nonconvex nature of FWI, we use hϕ as a
more general invertible network.
From an engineering perspective, the refinement network hϕ mit-

igates the amortization gap by adjusting the latent variable z before
feeding it to the inverse of the trained CNFs f−1θ� . Intuitively, min-
imizing the first term ties the posterior samples closer to the ob-
served data. The second term prevents the corrected latent space
from being far from the Gaussian distribution, which implicitly
takes advantage of the prior information existing in the amortized
training phase. The third term prevents mode collapse (Rezende and
Mohamed, 2015).
Equation 1 offers a fine-tuning approach that leverages the full

multidimensional wave physics to refine WISE for a given observa-
tion during inference. However, it introduces notable computational
demands because it necessitates the coupling of the modeling operator
and the networks. Specifically, every update to the network weights ϕ
requires costly wave modeling operations. Given that network train-
ing typically involves numerous iterations, these computational de-
mands can render it impractical for realistic FWI applications.
To relieve this computational burden, we adopt a weak deep prior

strategy (Siahkoohi et al., 2020) to reformulate equation 1 into a
weak form by allowing the network output to be only “weakly”
enforced to be the corrected velocity models. The objective function
for this weak formulation reads,

minimize
x1∶M;ϕ

1

M

XM
i¼1

�
1

2σ2
kF ðxiÞ − yobsk22 þ

1

2γ2
kxi

− f−1θ� ðhϕðziÞ; ȳobsÞk22 þ
1

2
khϕðziÞk22 − log j det Jhϕ j

�
; (2)

where fzigMi¼1 is the M realizations of standard Gaussian noise and
fxigMi¼1 is their corresponding particles (i.e., velocity models)
initialized in lines 17–19 of Algorithm 1. We strategically decouple
the computationally expensive forward operator F from the more
cheap-to-evaluate networks fθ� and hϕ. This is achieved in a penalty
form with the assumption that the misfit between the network out-
puts and the posterior samples adheres to a Gaussian distribution
Nð0; γ2IÞ, where γ is a hyperparameter dictating the trade-off

between data misfit and regularization. Setting γ to 0 equates this
weak formulation to the constrained formulation in equation 1. This
weak formulation also supports optimization strategies for updating
the velocity models with physical constraints and multiscale
optimization techniques (Esser et al., 2018; Peters et al., 2019).
WISER takes full computational advantage of this weak formu-

lation by using a nested loop structure. The outer loop is dedicated
for updating M velocity models xi through costly gradient descent
steps (lines 24–27 of Algorithm 1), whereas the inner loop (lines
28–31) focuses on more updates (with the Adam optimizer) to
network weights ϕ without computationally expensive physics mod-
eling. To achieve a balance, we conduct maxiter2 ¼ 128 iterations in
the inner loop. After refinements, WISER first evaluates the refined
network on the latent variables to obtain refined latent codes. Sub-
sequently, the amortized network uses these refined codes conditioned
on the CIGs to compute the corrected posterior samples (line 34).

CASE STUDIES

Evaluation of WISER is conducted through synthetic case studies
using 2D slices of the Compass model and 2D acoustic-wave phys-
ics. The parameter of interest is discretized into 512 × 256 grid points
with a spatial resolution of 12.5 m, resulting in more than 105 degrees
of freedom.We follow Yin et al. (2024b) to train the amortized CNFs.
To test the robustness and adaptability of WISER when faced with

unexpected conditioning data at inference, we evaluate WISERs per-
formance under out-of-distribution (OOD) scenarios. We introduce
alterations to an unseen velocity model drawn from the same statis-
tical distribution on which the CNFs were trained, as depicted in
Figure 1c, through an elementwise perturbation shown in Figure 1a.
This manipulation modifies the velocity values across different depth
levels, resulting in a significant shift in their statistical distribution,
as shown in Figure 1b. We use the perturbed velocity as the unseen
ground-truth velocity model in this case study, as shown in Figure 1d.
To further expand the amortization gap, we modify the encoding of
the forward operator by introducing a higher amplitude of bandlimited
Gaussian noise (signal-to-noise ratio of 0 dB).
These complexities present substantial challenges for WISE, lead-

ing to biased inference results, as shown in Figure 1e. The yellow
histograms in Figure 1b show that the velocity values of the posterior
samples from WISE closely resemble those of the original velocity
model, despite the different distribution of the ground-truth velocity
model. This indicates that WISE tends to incorporate an inductive
bias from the training samples. In WISER, we conduct maxiter1 ¼
160 outer iterations, using M ¼ 16 particles and one ocean-bottom
node (OBN) per gradient. We also use the frequency-continuation
method (Bunks et al., 1995) to compute the gradient in line 25 of
the WISER algorithm, transitioning gradually from low- to high-fre-
quency data. This results in a total of 40 datapasses or 5120 partial
differential equation (PDE) solves (datapass means a forward and an
adjoint pass for the entire OBN data set).

Observations

WISER produces more accurate posterior samples, as shown in
Figure 1f. Furthermore, the statistical distribution of the velocity val-
ues in the WISER posterior samples (green histogram in Figure 1b)
aligns better with the distribution of the unseen ground-truth velocity
values (blue histogram in Figure 1b), demonstrating WISERs robust-
ness against potential distribution shifts during inference.

Cost-effective full-waveform inference A3
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Figure 1. The OOD example. (a) Curves for velocity-value perturbations. (b) Histograms of values at the depth of 0.5 and 2.8 km in the
original velocity model (c), perturbed velocity model (d), posterior samples of WISE, and WISER, shown in red, blue, yellow, and green color,
respectively. (c) An unseen in-distribution velocity model. (d) Unseen ground-truth velocity model. (e) Estimated velocity models fromWISE.
The CM estimate is shown in the center. For posterior samples, horizontal traces at Z ¼ 2.7 km and vertical traces at X ¼ 3.6 km are displayed
on the top and the right, respectively. (g) Imaged reflectivity samples from WISE. (f and h) The same as (e and g) but for WISER, showcasing
significant improvements.
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Impact on imaging

The imaging results from WISE (Figure 1g) and WISER (Fig-
ure 1h) reveal noticeable discrepancies in quality. The conditional
mean (CM) migration-velocity model from WISE leads to discon-
tinuities in the imaged reflectivities, particularly at the horizontal
layer at a depth of approximately 1.8 km and more so below the
unconformity. In contrast, the CM from WISER significantly im-
proves the continuity in the imaged reflectivities across the entire
seismic section. The imaged reflectivity samples from WISER also
align more accurately with the estimated CM migration-velocity
model, which is particularly visible in supplemental Text S1.

DISCUSSION

WISER leverages genAI and physics to achieve a semiamortized
VI framework for scalable and reliable UQ for FWI even in situations
where local approximations are unsuitable. At its core, WISER har-
nesses the strengths of amortized and nonamortized VI: the amortized
posterior obtained through offline training provides a low fidelity but
fast mapping, and the physics-based refinements offer reliable and
accurate inference. Both approaches benefit from information pres-
ervation exhibited by CIGs, rendering our inference successful where
conventional FWI fails due to cycle skipping.

Related work and computational cost analysis

Compared with MCMC methods that rely on low-dimensional
parameterizations, WISER does not impose intrinsic dimensionality
reductions or simplifications of the forward model. Therefore,
WISER is capable of delivering full-resolution UQ for realistic
multidimensional FWI problems.
UQ problems inherently involve a trade-off between offline and on-

line computational costs. Access to a larger number of velocity models
and CIGs during the offline phase enhances the accuracy of amortized
inference in WISE. In addition, training samples that closely resemble
actual earth models could further improve this accuracy. Preliminary
studies have demonstrated that genAI workflows can create earth mod-
els from well measurements and imaged seismic data (Erdinc et al.,
2024). Leveraging these automated workflows allows us to generate
high-fidelity velocity models for the subsequent training of WISE, po-
tentially reducing the online costs required in WISER. Striking the
right balance between these offline and online costs remains a crucial
consideration. In Table 1, we list the required number of PDE solves
for several Bayesian inference methods applied to FWI.
Compared with nonamortized VI methods, WISER requires sig-

nificantly fewer computational resources during the online phase.
This efficiency arises because WISE, the precursor
to WISER, already provides near-accurate pos-
terior samples, making the subsequent refinement
procedure computationally feasible. In addition,
stochastic optimization techniques can be used
in line 25 of Algorithm 1 to control online
refinement costs. Therefore, we anticipate that
datapass1 ≪ datapass2 in Table 1 and expect that
datapass1 will not be prohibitively large. We
believe this computational cost analysis would
benefit from a benchmark case study in which
different methods are applied and relatively
compared, which we leave for future work.

Furthermore, WISER uses WISE as a conditional prior. During
the inference phase, the approximated posterior from WISE is con-
ditioned on the observed data, and WISER uses this approximated
posterior as its prior in the objective function, effectively perform-
ing sequential Bayesian updating (Rubio et al., 2023). The condi-
tional prior offers a more accurate approximation to the posterior
compared to an unconditional prior trained solely on prior samples
(Orozco et al., 2021). Arguably, this approach makes WISER more
cost efficient than nonamortized inference methods that only have
uninformative priors (Zhang et al., 2023) or that use a data driven
but unconditional prior (Kelkar et al., 2021). Beyond reducing com-
putational costs, WISER also ensures that the posterior samples
realistically resemble earth models, thanks to the integration of
conditional prior information from WISE.
In Wang et al. (2023) and Taufik et al. (2024), the authors trained

a nonconditional diffusion model and conditioned it on various
observations by performing gradient steps on the data likelihood,
using the learned denoiser as a prior. Although diffusion models
have shown promise in generating realistic-looking samples, using
them for density estimation is not straightforward (Song et al.,
2021), whereas it is straightforward with NFs. The WISER
algorithm was built using NFs, motivated by memory efficiency,
but it could be extended to use diffusion models as the backbone
generative model, as demonstrated by Orozco et al. (2024a).

Correctness of posterior approximation

Because hϕ is trained to minimize the reverse KL divergence in
equation 1, its composition with the amortized network fθ� is theo-
retically capable of representing the full Bayesian posterior (Winkler
et al., 2019), which is likely multimodal in FWI problems. Especially,
the amortized network minimizes the forward KL divergence, prevent-
ing mode collapse (Minka, 2005). In addition, WISER combines for-
ward and reverse KL divergence minimization, guiding the sampling
toward high-probability regions (Vaitl et al., 2024). This theoretical
capability has been empirically validated on toy examples (Orozco
et al., 2024c) and poststack seismic inversion examples (Rizzuti
and Vasconcelos, 2024), where analytical posterior solutions exist.
Supplemental Text S1 shows that WISERs posterior samples re-

spect likelihood and prior terms, indicating successful refinement of
WISEs amortized posterior. However, verifying the correctness or
multimodality of the approximated posterior remains challenging
due to the high dimensionality and nonlinearity of FWI. A low-di-
mensional FWI case study could use calibration tests (Guo et al.,
2017) and compare WISERs posterior samples with those from
MCMC and other inference methods — an endeavor we reserve
for future work.

Table 1. Number of PDE solves for several Bayesian inference methods for
FWI.

Method Offline PDE solves × nOBN Online PDE solves × nOBN

WISE (Yin et al., 2024b) 3 × N 2

WISER (proposed) 3 × N 2þ 2 × datapass1

Nonamortized inference 0 2 × datapass2

Here, N represents the number of training pairs; nOBN represents the number of OBNs in the seismic survey;
and datapass1 and datapass2 represent the number of datapasses through the entire OBN data set using WISER
and a nonamortized inference method, such as the ones presented in Zhang et al. (2023).
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Scalability

Neural network implementations often face significant memory
challenges in 3D problems due to the need to store intermediate
activations for backpropagation. However, NFs, composed of
invertible layers, mitigate this issue by recomputing intermediate
activations during backpropagation instead of storing them in
memory. Orozco et al. (2024d) exploit this property for memory
efficiency by manually implementing gradient calculations, ensur-
ing that memory consumption during backpropagation remains
constant regardless of the number of layers (as shown in Figure
2 of Orozco et al., 2024d). Practically, this means a CNF with
greatly many layers can be used for maximal expressiveness, pro-
vided that a constant factor of memory (related to the input and the
condition) fits on the device. This inherent memory efficiency
makes CNFs particularly suitable for 3D applications, as demon-
strated by the 3D WISE case study in Orozco et al. (2024c).
Although our computational toolchain supports 3D forward and

gradient calculations, deploying WISER in large-scale 3D FWI re-
mains a valuable direction for future research. In our case study, the
dimensions of network parameters θ and ϕ are Oð106Þ and Oð105Þ,
respectively, with the velocity model size being Oð105Þ. Further
studies should explore how the required number of training samples
and network parameters for accurate WISER inference scale with
the dimensionality of the parameter of interest.

Simulation gap and OOD inference

The presented case study illustrates WISERs capability when the
ground-truth velocity model used during inference is geologically
similar to those in the training samples. In practical terms, this sug-
gests that WISER can be effectively applied when WISE is trained
using velocity models that are drawn from the same region and
share similar geologic structures, e.g., from the same area in a basin.
Although these preliminary results are promising, further investiga-
tion is needed to determine the extent to which WISER can handle
OOD scenarios during inference. Another way to fundamentally ad-
dress the OOD issues is to diversify the training samples of WISE
through a foundation model (Sheng et al., 2024).
We acknowledge that a simulation gap between synthetic and field

data is inevitable. However, using CIGs, we can map information into
the extended image space even when the data originate from a mis-
specified forward model (e.g., elastic versus acoustic). Improving
network training to better process this information remains an impor-
tant avenue for future research. Although the simulation gap may
persist during WISE inference, WISER is specifically designed to
mitigate this issue by using a physics-based fine-tuning process that
aligns the posterior samples with the observed data.

Extension to other geophysical inverse problems

Finally, the WISE(R) framework can extend to quantify uncer-
tainty in other Bayesian inference problems, such as time-lapse
monitoring (Gahlot et al., 2023, 2024b; Yin et al., 2024a). The esti-
mated uncertainties can guide reservoir management decisions
within a digital twin framework (Herrmann, 2023), including con-
trolling injectivities (Gahlot et al., 2024a) and designing follow-up
monitoring surveys and wells (Orozco et al., 2024b). In addition,
mappings learned from CIGs to the velocity domain can be applied
to salt segmentation problems (Muller et al., 2023, 2024).

CONCLUSION

WISER sets the stage for deploying genAI models to facilitate
high-dimensional Bayesian inference with computationally inten-
sive forward operators. Deep learning and AI have been criticized
for their reliance on realistic training samples, but WISER helps to
reduce this dependence and still offers computationally feasible and
reliable inference through a blend of offline training and online
frugal physics-based refinements, preparing our approach for large
3D deployment.
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