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SUMMARY

Seismic monitoring of carbon storage sequestration is a chal-
lenging problem involving both fluid-flow physics and wave
physics. Additionally, monitoring usually requires the solvers
for these physics to be coupled and differentiable to effectively
invert for the subsurface properties of interest. To drastically
reduce the computational cost, we introduce a learned coupled
inversion framework based on the wave modeling operator, rock
property conversion and a proxy fluid-flow simulator. We show
that we can accurately use a Fourier neural operator as a proxy
for the fluid-flow simulator for a fraction of the computational
cost. We demonstrate the efficacy of our proposed method by
means of a synthetic experiment. Finally, our framework is
extended to carbon sequestration forecasting, where we effec-
tively use the surrogate Fourier neural operator to forecast the
CO2 plume in the future at near-zero additional cost.

INTRODUCTION

Time-lapse seismic monitoring of CO2 sequestration is one of
the most commonly used technologies to monitor CO2 dynam-
ics in the Earth’s subsurface through multiple seismic surveys
(vintages) (Lumley, 2001). Time-lapse seismic has been used
by carbon capture and storage (CCS) practitioners at various
storage sites (Eiken et al., 2000; Arts et al., 2003; Chadwick
et al., 2010; Ringrose et al., 2013; Furre et al., 2017). The
growth of the CO2 plumes can be inferred by time-lapse seis-
mic imaging (Arts et al., 2003; Ayeni and Biondi, 2010; Kotsi,
2020; Yin et al., 2021) or by time-lapse full-waveform inver-
sion (Queißer and Singh, 2013; Yang et al., 2016; Kotsi et al.,
2020). Unfortunately, plain subtractions of time-lapse seismic
images or inversion results often contain unwanted artifacts
due to noise or to differences in acquisition (Oghenekohwo
and Herrmann, 2017a; Zhou and Lumley, 2021b), which can
potentially corrupt the often rather subtle time-lapse differences
due to changes in CO2 concentration.

Over the years, several attempts have been made to mitigate
this challenge by improving the repeatability of time-lapse seis-
mic, including the forward and backward bootstrapping method
(Asnaashari et al., 2015), the double-difference method (Watan-
abe et al., 2004; Denli and Huang, 2009; Zhang and Huang,
2013; Yang et al., 2015), the central-difference method (Zhou
and Lumley, 2021a), data assimilation via Kalman filtering (Li
et al., 2014; Eikrem et al., 2019; Huang and Zhu, 2020) and
the joint recovery model (Oghenekohwo et al., 2017; Wason
et al., 2017; Oghenekohwo and Herrmann, 2017b; Yin et al.,
2021). While these methods resulted in improvements in re-
peatability of time-lapse seismic, they ignore the fact that the
dynamics of CO2 plumes, to the leading order, adhere to two-

phase flow equations. Given physical properties of the two
fluids (brine and supercritical CO2) and the spatial porosity
and permeability distributions, these fluid-flow equations are
capable of predicting CO2 concentration snapshots during and
after CO2 injection. By coupling these fluid-flow equations,
via a rock physics model (the patchy saturation model (Avseth
et al., 2010)), to the wave equation, Li et al. (2020a) proposed
an end-to-end inversion framework where time-lapse seismic
surveys are jointly inverted to yield estimates for the spatial
permeability distribution. Compared to the sequential inversion
(Hatab and MacBeth, 2021b,a) and history matching workflows
(Oliver et al., 2021), estimates of the CO2 concentration in
the coupled inversion are regularized by fluid-flow physics.
Because coupled inversion (Li et al., 2020a) makes use of the
fluid-flow equations, it offers a framework capable of producing
direct estimates for the permeability. The latter can be used to
generate improved predictions for the behavior of CO2 plumes.
Despite the initially promising results by Li et al. (2020a) on
synthetic experiments, the downside of their proposed coupled
framework is the increased complexity that comes with includ-
ing partial differential equations (PDEs) for the fluid-flow as
constraints. Aside from the need to compute sensitivities of
solutions of the fluid-flow equations, solving these PDE can be
computationally expensive (Settgast et al., 2018; Rasmussen
et al., 2021).

To address this challenge, we propose to replace solvers for the
fluid-flow PDEs by Fourier neural operators (FNOs, Li et al.,
2020b). After training on a representative dataset, FNOs are
capable of producing CO2 plume snapshots quickly (Wen et al.,
2021a; Zhang et al., 2022) while automatic differentiation (AD)
gives us easy and fast access to the gradient with respect to
the input. As such, trained FNOs can be considered as a data-
driven surrogate for the computationally expensive fluid-flow
simulations, making them a suitable candidate for the proposed
coupled inversion framework that calls for multiple fluid-flow
simulations including calculation of the gradient.

This extended abstract is organized as follows. First, we dis-
cuss the coupled inversion framework for seismic monitoring of
geological carbon storage. Second, we introduce FNOs as sur-
rogates for fluid-flow simulations. Next, we present the learned
FNO-based coupled inversion framework where the fluid-flow
solver is replaced by a pre-trained FNO. Finally, we verify the
efficacy of the learned coupled inversion framework through
a synthetic experiment. We further show that the trained FNO
can forecast the growth of the CO2 plume in the future with the
inverted permeability model.

COUPLED INVERSION FRAMEWORK

Our goal is to estimate the past, current, and future behavior
of CO2 plumes from available time-lapse seismic data. To
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achieve this goal, we consider the coupled inversion frame-
work proposed by Li et al. (2020a). In this framework, three
types of physics are integrated, namely fluid-flow, rock, and
wave physics. The CO2 plume dynamics are modeled by two-
phase flow equations (Pruess and Nordbotten, 2011), which we
represent as the following mapping:

K 7! c = S (K) where c = [c1,c2, . . . ,cnv
], (1)

where the vectors ci, i = 1 . . .nv are the discretized CO2 con-
centration snapshots for each vintage. In this mapping, S
represents two-phase flow simulations that given the perme-
ability, K, models the CO2 concentration as a spatial function
over nv consecutive times. Then, the patchy saturation model
(Avseth et al., 2010) maps the nv snapshots of the CO2 con-
centration to seismic wavespeeds—i.e., we introduce for each
vintage (i = 1 . . .nv) the following mapping:

ci 7! vi = R(ci) for i = 1,2, . . . ,nv, (2)

where R represents the rock physics model and vi, i = 1 · · ·nv

the snapshots of the acoustic wavespeed. To connect these
wavespeed snapshots to the seismic data vintages, we introduce
the mapping:

vi 7! di = Fi(vi) for i = 1,2, . . . ,nv, (3)

where Fi is the wave modeling operator for vintage i that gen-
erates the corresponding seismic dataset di given the velocity
model vi (Tarantola, 1984; Virieux and Operto, 2009). To arrive
at the end-to-end formulation linking multi-vintage seismic data
to the permeability, we finally compose (denoted by the � sym-
bol) these three mappings yielding the following minimization
problem:

minimize
K

1
2
kF �R �S (K)�dk2

2

where d = [d1,d2, . . . ,dnv
],

(4)

where d represents the nv vintages of the time-lapse data. While
the optimization problem 4 offers a unique formulation where
time-lapse seismic data are linked to the permeability, its min-
imization is complex since it entails nested application of the
adjoint-state method (Plessix, 2006) involving computation-
ally expensive forward simulations of both wave and fluid-flow
physics. To simplify the formulation and to drastically reduce
computational cost of minimization problem 4, we propose to
replace the fluid-flow solves by a trained FNO.

FOURIER NEURAL OPERATORS

There exists a growing literature on solving numerical PDEs
via learned data-driven approaches involving neural networks
(Lu et al., 2019; Raissi et al., 2019; Kochkov et al., 2021; Karni-
adakis et al., 2021). After incurring initial training costs, neural
networks have been shown to to provide faster alternatives to
numerical PDE simulations. Recently, FNOs (Li et al., 2020b,
2021) have emerged as a powerful technique to approximate the
solution operator of parametric PDEs. After training, FNOs can
generate approximation solutions of PDEs from the coefficients
orders of magnitude faster than numerical solvers (Li et al.,
2020b). This means that computational costs, which consist

of generating training pairs coefficient (permeability K) and
solution (CO2 concentration c) and training the network, are
sustained upfront. This front loading of computations leads to a
drastic reduction in simulation time during the inversion—i.e.,
minimization of problem 4. We refer to the existing literature
(Wen et al., 2021a; Zhang et al., 2022) for details on how to
train FNOs to approximately map permeability models to the
time evolution of CO2 plumes. In this abstract, we assume
to have Sqqq (K) ⇡ S (K) for the permeability drawn from a
certain distribution. Here, Sqqq (·) denotes the approximate map,
which depends on the learned FNO weights qqq . Given an unseen
spatial distribution for the permeability K, the trained FNO can
instantaneously produce the time-dependant CO2 concentra-
tion by forward evaluation of the FNO as Sqqq (K) (Li et al.,
2020b; Wen et al., 2021a; Zhang et al., 2022). In addition, AD
gives us access to the gradient with respect to FNO’s input (the
permeability K) that can be used for inversion. By virtue of
these capabilities, the proposed approximation by FNOs can be
used as a surrogate for the fluid-flow solver in the end-to-end
formulation of problem 4.

FORECAST VIA LEARNED COUPLED INVERSION

While the end-to-end formulation (shown in Figure 1) provides
access to estimates of the permeability, CO2 plume forecast-
ing (Wen et al., 2021b) is our main objective because they
offer guarantees that the CO2 plume is progressing as planned.
To meet our goal of CO2 plume forecasting, the proposed
learned and coupled formulation offers several distinct advan-
tages. First, the coupled formulation uses information from
all collected time-lapse vintages to arrive at estimates for the
permeability itself and past and current behavior of the CO2
plume. The fact that the two-phase flow equations act as a regu-
larizer leads to improved estimates for the CO2 plume (Li et al.,
2020a). Second, the use of FNOs reduces the computational
cost (Li et al., 2020b; Wen et al., 2021a), which potentially
enables uncertainty quantification and risk management of the
growth of the CO2 plume in the future. Third, the coupled
framework provides access to estimates for the permeability
that can be used to forecast future behavior of CO2 plumes.
Given the estimated permeability model from the learned cou-
pled inversion and an FNO trained on the time range of CCS
projects, the current and future CO2 concentration snapshots
can all be generated by forward evaluation of the FNO. The
forecast of CO2 plume in the future can help the practitioners
to detect potential failing scenarios in the early period of the
CCS project, such as CO2 leaking through fractures in the seal
(Ringrose, 2020).

NUMERICAL EXPERIMENTS

By means of a synthetic case study, we validate the performance
of our FNO-based learned coupled inversion framework to
invert for the permeability from time-lapse seismic data. We
then show that we can use the estimated permeability to forecast
the evolution of the CO2 plume in the future. We begin by
describing how we train the FNO to learn the two-phase flow
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Figure 1: Learned coupled inversion framework, which contains
three modules: pre-trained FNO, rock physics model, and wave
physics model. Given time-lapse seismic datasets, we estimate
the intrinsic permeability via end-to-end inversion.

physics.

Training setup

We create 1000 pairs of permeability and time evolution of CO2
concentration to form the training set. The size of the perme-
ability is 64⇥64 with a grid spacing of 15m in both vertical
and horizontal directions. Each permeability model is 20 milli-
darcies (md) everywhere except for a high permeability channel
with 120md in the central area of the model, of which the ran-
dom curving boundaries are generated by a Gaussian process
(Bishop and Nasrabadi, 2006). An example of the permeability
model in shown in Figure 2a. For fluid-flow simulation, we add
an injection well that injects supercritical CO2 (with density
501.9kg/m3) on the left-hand side of the model, and a produc-
tion well that produces brine (with density 1053.0kg/m3) on
the right-hand side of the model. We assume the porosity of the
reservoir is fixed to 25% homogeneously. The time evolution
of the CO2 concentration is modeled with FwiFlow.jl (Li et al.,
2020a) over a period of 1000 days with a time step of 20 days.
This numerical simulation creates 51 snapshots in total for each
permeability model. We form the training dataset, where each
sample is a pair of the permeability model and corresponding
51 snapshots of CO2 concentration. We train an FNO that maps
the input permeability K(x,z, t) to the output CO2 concentra-
tion c(x,z, t). We follow the original implementation of FNOs
https://github.com/zongyi-li/fourier_neural_operator (Li et al.,
2020b) and re-implement the FNO in Julia in order to integrate
with other software modules in the learned coupled inversion
framework.

Learned coupled inversion from time-lapse seismic data

After training, we show the performance of the learned coupled
inversion framework described in Figure 1. During testing,
we draw an unseen permeability sample, shown in Figure 2a,
and generate 11 early snapshots of CO2 concentration at ev-
ery 40th day using the numerical solvers. The snapshots at
day 40, 160 and 280 are shown in Figure 3d, 3e, 3f, respec-
tively. Since these are the early snapshots, the CO2 plume does
not reach the entire high permeability channel from the left to
the right. We then convert these CO2 concentration snapshots
to the time-varying velocity models via the patchy saturation
model (Avseth et al., 2010), and generate 11 cross-well seis-

mic surveys on these 11 velocity models. The wave physics
is modeled with JUDI.jl (Witte et al., 2019; Louboutin et al.,
2022), which uses the highly-optimized matrix-free wave prop-
agators of Devito (Louboutin et al., 2019; Luporini et al., 2020,
2022). Each seismic survey contains 32 active sources in a
borehole on the left-hand side of the model, and 960 receivers
in a borehole on the right-hand side of the model. We then
invert for the permeability from the time-lapse seismic data via
the learned coupled inversion framework in Figure 1. We start
our initial guess as an average of the samples in the training set
(a blurred channel shown in Figure 2b), and iteratively solve
for the permeability by projected gradient descent with a box
constraint on the permeability between 10md and 130md. At
each iteration, we compute the seismic data misfit for only four
shot records in each time-lapse survey. This reduces the cost
of wave physics as only one eighth of the shot records are used
during the forward and gradient evaluation (Li et al., 2012; van
Leeuwen and Herrmann, 2013). We use the backtracking lin-
ear search algorithm (Stanimirović and Miladinović, 2010) to
choose the step length accordingly. We use SetIntersectionPro-
jection.jl (Peters and Herrmann, 2019; Peters et al., 2021) for
box constraint projection. After 120 iterations (15 data passes
on the entire time-lapse dataset), the inverted permeability is
shown in Figure 2c. Since the CO2 plume grows mostly at the
left part of the channel (near the injection well) in these early
snapshots, some part of the permeability model is in the null
space thus difficult to recover exactly. However, we can see that
the learned coupled inversion is able to approximately estimate
the high permeability channel and to delineate curvatures es-
pecially at the upper boundary. Next, we demonstrate that this
estimate is already remarkably accurate to recover the shape of
the CO2 plume and forecast the growth of the CO2 plume in
the future.

(a) (b) (c)

Figure 2: Learned coupled inversion from 11 seismic surveys
with FNO as a surrogate. (a) Unseen ground truth permeability
test sample. (b) Initial permeability. (c) Inverted permeability
via 100 projected gradient descent iterations.

In addition to recovering the permeability, we are interested in
CO2 concentration recovery as it indicates the growing progress
of the CO2 plume. In Figure 3, we show the recovered CO2 con-
centration snapshots at day 40, 160 and 280, which are acquired
by a forward evaluation of FNO on the inverted permeability.
We juxtapose the recovered concentrations snapshots with the
ground truth and the differences for easy visualization. We
observe that our predicted CO2 concentration snapshots fit the
ground truth accurately with very few artifacts near the bound-
aries of the CO2 plume. This demonstrates that the proposed
learned coupled inversion framework can be used successfully
for carbon storage monitoring.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: (a)(b)(c) Recovered snapshots of CO2 concentration
at 40, 160, and 280 days after injection. (d)(e)(f) Ground truth
snapshots of CO2 concentration. (g)(h)(i) Difference plotted in
the same scale.

Finally, once we reach the 400 days, we do not have access to
seismic data anymore (in the future). However, we can use the
trained FNO to forecast the CO2 concentration in the relatively
near future assuming that the fluid dynamic will not drastically
change. We show on Figure 4 the forecast at day 440, 560
and 680 by juxtaposing them with the ground truth obtained
through numerical simulation and the differences. We observe
that the forecast is relatively accurate and catches the global
behavior of the plume even though no seismic monitoring data
is available. This result confirms that the pre-trained FNO
in combination with the permeability estimate from the time-
lapse seismic can provide a forecasting framework for seismic
monitoring of geological carbon storage.

The learned coupled inversion framework is implemented in
Julia, where we use Flux.jl for AD. The scripts to reproduce
the experiments are available on the SLIM GitHub page https:
//github.com/slimgroup/FNO4CO2.

DISCUSSION AND CONCLUSION

Coupled inversion for carbon sequestration monitoring is com-
putationally challenging as it needs to iteratively solve fluid-
flow and wave equations, and differentiate through the solvers.
We overcome this problem by replacing the fluid-flow solver
by a pre-trained Fourier neural operator, which reduces the
computational cost of fluid-flow simulations and differentiation.
We demonstrated that the learned coupled inversion framework
can yield reasonable estimates of the permeability of the reser-
voir. This estimated permeability can then be used for not only

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a)(b)(c) CO2 concentration forecast at 440, 560, and
680 days after injection. (d)(e)(f) Ground truth snapshots of
CO2 concentration from numerical simulation on the ground
truth permeability model. (g)(h)(i) Difference plotted in the
same scale.

generating the CO2 concentration snapshots at the current vin-
tages, but also forecasting the growth of the CO2 plume in the
future. This can potentially enable uncertainty quantification
for potential plume behaviors in the future for risk management.
While these initial results on learned coupled inversion are en-
couraging, more realistic physics phenomena can be considered
in future work to numerically model the fluid-flow and wave
physics more accurately. More robust inversion methods with
regularization and constraints may also lead to better estimation
of the permeability and CO2 concentration. Future work will
also involve exploration of the generalization capability of the
Fourier neural operator and development of a large-scale 3D
continuous monitoring framework that potentially updates the
permeability according to the latest acquired seismic data from
the field.
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