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Summary 

 

This paper describes how to propagate wavefields for 

arbitrary numbers of traditional time steps in one step, called 

a superstep. It is achieved by implementing a computational 

tradeoff differing from traditional single step wavefield 

propagators by precomputing Green’s functions for each 

model location for k timesteps (a superstep) and using these 

Green’s functions to propagate the wavefield k time steps at 

once. This tradeoff separates physics (Green’s function 

computation) from computer science (wavefield 

propagation) and allows each discipline to provide their 

optimal modular solutions. 

 

Introduction 

 

Traditional wavefield propagation uses finite-difference 

time domain (FD) schemes to advance a wavefield one 

timestep at a time to perform a matrix-vector multiplication 

of the current and previous wavefields with the combination 

of material properties (such as velocity or density) in a 

pattern described by the FD kernel. The accuracy, stability 

and dispersion of such FD schemes have been studied 

extensively and are well understood [1], [2], [3], [4], [5]. 

Today, most modeling and imaging applications are built on 

linear or linearized FD schemes from acoustic forward 

modeling to VTI, TTI and elastic imaging. Such schemes 

can be viewed as a series of matrices (one for each time step) 

applied to the current wavefield vector. It is an accepted 

view that computationally it is better to carry out this 

computation sequentially from “right” to “left”, that is, start 

by multiplying the zeroth-time wavefield vector on the right 

with the matrix for the first time step resulting in a new 

vector; applying the next time step matrix to the new vector, 

and so on, until all matrix-vector multiplications are 

executed.  

 

We have researched numerical formulations for wavefield 

propagation where the tradeoff for compute and storage is 

different from the traditional formulation and the 

algorithmic components are generalized. This effort led us 

to recast the process of wavefield propagation as two distinct 

steps of “Precompute” and “Compute”. During Precompute, 

the common reusable components (Green’s functions) are 

calculated and stored. This Precompute stage  is separate 

from the subsequent Compute step and can therefore be 

executed on separate systems possibly with a different 

hardware architecture. During the Compute stage, those 

precomputed components (Green’s functions) are used and 

re-used to achieve wavefield propagation. 

 

The key observation to superstepping is to re-arrange the FD 

schemes in such a way that current and previous wavefields 

are related to future and subsequent wavefields via a square 

system matrix that can be raised to the kth power 

corresponding to superstepping of k traditional time steps. 

When the initial wavefield is a delta function for each spatial 

location, we can precompute the Green’s functions at each 

location to the kth traditional time steps. These pre-

computed Green’s functions become impulse response 

filters at these locations. Then we apply these filters with the 

actual wavefields to advance the wavefield by k steps. 

 

Similar ideas have appeared in different contexts. Seismic 

interferometry [6], [7], [8] uses Green’s functions to 

reconstruct wavefields from other wavefields. Similarly, 

Marchenko methods [9], [10] reconstruct subsurface 

Green’s functions and use them for imaging. Superstepping 

can be considered as a special case of seismic interferometry. 

Recently many novel machine learning techniques were 

developed that train to predict the system states continuously 

from current time to up to a given future time. These 

methods, such as the Fourier Neural Operators [11], [12] use 

the inherent nonlinearity in the neural network to provide a 

model for inference. Although both machine learning 

methods and superstepping can produce future states of the 

system, superstepping is based on the linear properties of the 

system and is not an approximation to the traditional time 

stepping schemes. 

 

Theory 
 

A typical first-order system of equations with 2 state 

variables for wave propagation can be written in a matrix 

equation form as 

                               (
�̇�
�̇�

) = (
0 𝐴
𝐵 0

) (
𝐮
𝐯

)   ,                  (1) 
 

where �̇� and �̇� are temporal derivatives of state variables 𝐮 

and 𝐯 (typically particle velocity and stress). Matrices A and 

B incorporate material parameter coefficients and partial 

derivative operators. This system can  be discretized as a 

symplectic Euler scheme, 
 

                          
𝐮𝑛+1 =  𝐮𝑛 + 𝐴 𝐯𝑛

     𝐯𝑛+1 =  𝐯𝑛 + 𝐵 𝐮𝑛+1
                    (2) 

 

where 𝐮 ̇ = (𝐮𝑛+1 − 𝐮𝑛)/∆𝑡, 𝐯 ̇ = (𝐯𝑛+1 − 𝐯𝑛)/∆𝑡 and ∆𝑡 

is a suitably chosen time step that is absorbed into matrices 

A and B here for simplicity. Equation 2 can be expressed in 

matrix form as 
 

                   (
𝐮𝑛+1

𝐯𝑛+1
) = (

𝐼 𝐴
𝐵 𝐼 + 𝐵𝐴

) (
𝐮𝑛

𝐯𝑛
)   .              (3) 
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Finite-difference wavefield propagation using superstepping 

 

Note that the system matrix in Equation 3 is a square matrix 

composed of 2x2 block matrices. The block matrices do not 

need to be square matrices themselves. Applying the system 

matrix once advances the wavefield one time step. Repeated 

applications of the system matrix in Equation 3 corresponds 

to repeated time steps. Therefore, applying k time steps 

corresponds to raising the system matrix to the kth power 
 

                 (
𝐮𝑛+𝑘

𝐯𝑛+𝑘
) = (

𝐼 𝐴
𝐵 𝐼 + 𝐵𝐴

)
𝑘

(
𝐮𝑛

𝐯𝑛
)   .             (4) 

 

Equation 4 implies that we can calculate the 𝐮𝑛+𝑘, 𝐯𝑛+𝑘 

wavefields from 𝐮𝑛, 𝐯𝑛 by either sequentially applying the 

propagator matrix k times as in traditional time stepping, or 

calculating the effects of the propagator matrix to the kth 

power and applying it to 𝐮𝑛, 𝐯𝑛. 
 

Next, we extend to second-order systems based on the 

learnings from first-order equations. The corresponding 

second-order system (in time) derived from Equation 1 is 
 

            (
�̈�
�̈�

) = (
0 𝐴
𝐵 0

) (
�̇�
�̇�

) = (
𝐴𝐵 0
0 𝐵𝐴

) (
𝐮
𝐯

)   .          (5) 

 

After some manipulations and using the 𝐯 state variable we 

show that the n+k-1 and n+k wavefields can be expressed 

from the n-1 and n wavefields by raising a square matrix 

composed of 2x2 block matrices to the kth power 
 

               (
𝐯𝑛+𝑘−1

𝐯𝑛+𝑘
) = (

0 𝐼
−𝐼 2𝐼 + 𝐵𝐴

)
𝑘

(
𝐯𝑛−1

𝐯𝑛
)   .         (6) 

 

Note that the structure of the system matrix corresponds to 

the structure of the system matrix for the first-order system, 

except that the block matrices in the first column are leading 

negative. 

 

Algorithm 

 
Both the first- and second-order kth-power propagator 
matrices in Equations 4 and 6 can be formally written as  
 

                         𝑆(𝑘) = (
𝑆11(𝑘) 𝑆12(𝑘)
𝑆21(𝑘) 𝑆22(𝑘)

)                         (7) 

 

where S(k) denotes the kth superstep propagator matrix with 

the pre-calculated block matrices. Each block matrix Sij(k) 

corresponds to the ith output state variable vector and the jth 

input state variable vector. The block matrices are 

discretized forms of linear integral kernel operators. In wave 

equations these kernel operators correspond to Green’s 

functions and the functions these kernels operate on are the 

time source functions. Therefore, Sij(k) are a set of Green’s 

functions, one for each row of each block matrix and 𝐮𝑛, 𝐯𝑛 

are the time source functions. The Green’s functions 

correspond to the unit input for each element in the input 

vector calculated by solving the wave equation for k time 

steps. This requires knowing the earth model parameters 

only and therefore can be pre-computed and stored for 

subsequent use. Advancing the wavefield k time steps at 

once then corresponds to computing the matrix-vector 

multiplies for each block matrix generating scalars and 

adding these scalars to generate a single scalar that 

corresponds to the k-advanced wavefield at that position. 

The multiplication of a row of a block matrix with the input 

vector is a dot product. This dot product evaluation is 

illustrated in Figure 1 on a subset of the Marmousi data.  

 

We can generalize the number of state variables to more than 

two. While 𝐮 and 𝐯 shown in Equation 1 are representative, 

these vectors can be multi-component themselves. For 

example, 𝐮 can be single-component if it represents a scalar 

variable such as pressure, or 3-component vector 𝐮 = (ux, uy, 

uz) if it represents a gradient vector field, or a 6-component 

vector 𝐮 = (uxx, uyy, uzz , uxy, uxz , uyz) if it represents the 

components of more complex differential operators. The 

number of components can be different for 𝐮 and 𝐯. The full 

wavefield 𝐰 is a combination of wavefields 𝐮 and 𝐯 and has 

Nc components where Nc is the sum of the number of 

components in 𝐮 and 𝐯. At any location i at any time step n 

there are Nc state variable values, and we can represent them 

by denoting them as 𝐰𝑖𝛼𝑗. For scalar-component 𝐮 and 𝐯 this 

corresponds to Nc = 2. Since the state variables scale by Nc 

for both the input and the output, the corresponding system 

matrix is the size of Nc × Nc block matrices. These Green’s 

functions at a given location corresponds to the various 

combinations of input and output components. We will 

denote these Green’s functions as Giαβ(k) where i is the index 

of the physical location, α is the index of the output 

component, β is the index of the input component and k is 

the superstep size. Finally, index j corresponds to a particular 

shot record. Note that the Green’s functions are independent 

of the shot records but the wavefield 𝐰𝑖𝛼𝑗 carries this index. 

The Algorithm Superstep Wavefield Propagation in the 

pseudo-code below implements the generalized propagator 

 

Algorithm Superstep Wavefield Propagation 

________________________________________________ 

Function Superstep( k, n0, Nt, Nmod, Nc, Ns, w(n0), G(k) ) 

  for n = n0 : k : Nt do                        ▷ iterate in superstep index 

  |  for i = 1 : Nmod do                        ▷ iterate in model location 

  |  |  for α = 1 : Nc do                     ▷ loop for output wavefield 

  |  |  |  for j = 1 : Ns do                                  ▷ iterate over shots 

  |  |  |  |  for β = 1 : Nc do                  ▷ loop for input wavefield 

  |  |  |  |  |   𝐺𝑖𝛼𝛽(𝑘) = 𝐺𝑒𝑡𝐺𝑟𝑒𝑒𝑛𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠(i, α, β) 

  |  |  |  |  |   �̃�𝑖𝛼𝛽𝑗(𝑛) = 𝐶𝑢𝑡𝑊𝑎𝑣𝑒𝑓𝑖𝑒𝑙𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝐰(n)) 

  |  |  |  |  𝑤𝑖𝛼𝑗(𝑛 + 𝑘) = ∑ 𝐺𝑖𝛼𝛽(𝑘)・�̃�𝑖𝛼𝛽𝑗(𝑛)
𝑁𝑐

𝛽=1  

  return w  
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Finite-difference wavefield propagation using superstepping 

function. Function GetGreensFunction returns all the 

Green’s functions 𝐺𝑖𝛼𝛽(𝑘) for a given model location. 

Function CutWavefieldSegment isolates the wavefield 

segments from the overall wavefield that matches the spatial 

extent with their corresponding Green’s functions returning 

�̃�𝑖𝛼𝛽𝑗(𝑛). The updated variables 𝐰𝑖𝛼𝑗(n + k) are the sum of 

the dot products of the Green’s functions 𝐺𝑖𝛼𝛽(𝑘) and the 

corresponding state variables �̃�𝑖𝛼𝛽𝑗(𝑛)at the nth timestep. 

 

Superstepping computational model 

 

Superstepping creates two fundamentally different tasks to 

propagate wavefields: (a) Precompute - creating Green’s 

functions for a given model and (b) Compute - using the 

Green’s functions to advance the wavefields.  

 

Precompute: Green’s functions represent the propagator 

matrix and the wavefields represent the input and output 

vectors. Since the earth model parameters are all contained 

in the propagator matrix, the Greens’ functions represent all 

the physics used in wavefield propagation, including the 

actual physics encoded in the partial differential equations, 

all the numerical issues of physics such as dispersion, 

boundary conditions, in addition to the distribution of the 

Green’s functions in space and the number of Green’s 

function at each spatial location. Therefore, they can be 

precomputed and apply to all measurement time ranges, and 

to all shot records. This presents an opportunity to generate 

high quality Green’s functions where all the desired physics 

is incorporated. One way to accelerate the computation of 

Green’s functions is to reduce their size to their physical 

domain of influence by removing the areas external to the 

wavefront. This preserves numerical precision. This can be 

thought of as bringing two different parts of physics into the 

Green’s functions before discarding physics: (a) computing 

the Green’s function coefficients based on physics and (b) 

determining the causal regions based on both math and 

physics. Another way to improve the computed Green’s 

functions is to incorporate the physics of handling boundary 

reflections into them. We can also reduce dispersion in the 

Green’s functions by employing high fidelity numerical 

schemes during their computation. Since Green’s functions 

are shared in different time scales and among survey records, 

the optimization efforts provide significant value for large-

scale runs. Green’s functions represent the filter that moves 

the incoming wavefields k timesteps forward. These same 

Green’s functions can also be used to move the incoming 

wavefield k timesteps backward essential for computing 

gradients (full waveform inversion) or migration images 

(reverse time migration). Green’s functions can be further 

improved by generating representations to reduce grid 

effects or improving the wavefield continuity. These 

representations can be accomplished by either traditional 

signal processing or machine learning methods. Green’s 

functions can also be used for approximations of the full 

wave equations, such as rays, dynamic rays, or other simpler 

geometrical optics approximations as smooth gradients with 

second order derivatives. 

 

Compute: Wavefield propagation in superstepping is 

agnostic to physics as physics has already been 

parameterized and incorporated into Green’s functions. 

Therefore, one can consider wavefield propagation to be a 

computer science task that uses parameterized Green’s 

functions. From this perspective, the implementations need 

to be general to efficiently map to a broad range of compute 

resources and at the same time allow for efficient 

representations of Green’s functions and their interactions 

with wavefields. The generality of mapping is facilitated by 

the simplification of tasks during superstepping: (a) keep 

Green’s functions in memory awaiting wavefields; (b) select 

and crop the wavefields to the Green’s function size and 

bring them to the corresponding memory and (c) compute 

the dot product between the Green’s functions and the 

cropped wavefields. These operations capture the available 

resources on a compute node, namely, memory, interconnect 

and compute resources. Maximizing all these resources is 

thus a computational optimization goal. The Algorithm 

describes a distributed computing model that is unusual from 

traditional finite-difference modeling perspective. It favors 

parallelization by earth model locations and not by 

individual shot record locations. Note that the earth model 

 

 

Figure 1: Dot product calculation between a Green’s function and 
the corresponding wavefield. Top left: Green’s function after 30 

time steps. Top right: Wavefield after 300 timesteps in the physical 

2D domain. Bottom left: Wavefield segment corresponding to the 
physical area of the Green’s function. Bottom right: Element-wise 

multiplication of the Green’s function and the wavefield segment. 
These values are summed up to a single scalar. 
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Finite-difference wavefield propagation using superstepping 

locations (loops indexed by i) are outer to the shot records 

(loops indexed by j) in the Algorithm.  

 

Numerical Example  

 

The superstepping scheme was applied to a 300x300 grid 

section of the Marmousi model shown in the bottom left 

figure in Figure 2. The source location is in the middle of the 

model at (1500m, 1500m). The top left figure shows the 

wavefield after 300 traditional time steps and the top right 

shows the corresponding superstep-propagated wavefield  

after 9 30-traditional-step supersteps were applied to the 

initial wavefield. The bottom right figure shows the 

difference between the wavefields in the top left and right 

figures. As expected, the superstep results closely matched 

the results achieved using traditional time stepping. 

 

Conclusions 

 

We have developed a superstepping scheme for linear or 

linearized partial differential equations where the effect of 

the repeated application of the propagator matrix can be 

precomputed in an efficient manner. This result has several 

important consequences.  

 

The superstep formulation is a general scheme that applies 

to all linear discretized PDEs. The presented Algorithm is 

applicable to acoustic or elastic wave equations, and even 

more complex discretized equations. The only difference 

between the various equations is in the content and the 

number of those Green’s functions.  

 

The superstep formulation clearly separates tasks that are 

associated with the physics and tasks associated with 

wavefield propagation. This was our original goal when we 

initiated this effort. The first tasks can be pre-computed and 

the resulting Green’s functions used in a later wavefield 

propagation. We have shown that all physics can be 

accounted for during the generation of the Green’s functions 

and these Green’s functions can be further enhanced. 

 

The wavefield propagation task is well-suited for computer 

science optimization and compute resource mapping. 

Specifically, the three steps in wavefield propagation: (a) 

keeping Green’s functions in memory awaiting wavefields; 

(b) selecting and cropping the wavefields to the Green’s 

function size and bring them to the corresponding memory 

and (c) compute the dot product between the Green’s 

function and the cropped wavefield, are fully utilizing the 

resources on compute nodes and allowing computational 

optimization without the need to know the underlying 

physics. 

 

Green’s functions are computed for each grid location in the 

earth models and the locations indices are in the outer loops 

in the Algorithm. This results in a distributed computing 

scheme where the main distribution factor is the placement 

of sufficient number of Green’s functions in a node’s 

memory. Efficient memory utilization is the driving force for 

computational optimization, and it underscores that most 

large-scale wavefield propagation jobs are bandwidth 

limited. 

 

It would be essentially futile to advance wavefields via 

superstepping if we would need to interpolate back to all 

regular time steps for imaging or adjoint-state-based 

gradient computation. We have developed imaging schemes 

using superstepping that avoid these interpolations and the 

wavefield propagation for gradients (FWI) and imaging 

(RTM) can proceed using  superstepping. 

 

Since the wavefield propagation is heavily influenced by 

computational optimization, the future success of this 

method fully depends on strong domain-specific language 

implementations. 
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Figure 2: Wavefield after 300 traditional time steps. Top left: 
Wavefield after 300 steps calculated by traditional method; Top 

right: Wavefield after 300 steps calculated by superstep method. 

Initial wavefield at 30 steps was advanced by 30 steps at once using 
Greens functions; Bottom left: Velocity model (301x301 subset of 

Marmousi); Bottom right: Difference between the 1-step and 

superstep methods at the time scale of the wavefield. 
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